© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Qing-Xiang Li, Yi-Zhi Li and Qin-Hui Luo*

Coordination Chemistry Institute, State Key Laboratory, of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: llyyjz@nju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.036 wR factor = 0.069 Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[1-(Benzimidazol-2-ylmethyl)-1,4,7triazacyclononane]chlorocopper(II) perchlorate

In the title complex, $[Cu^{II}Cl(C_{14}H_{21}N_5)]ClO_4$, the Cu atom is located at the center of a distorted trigonal bipyramid of five coordinating atoms (four N atoms and one Cl atom). Two N atoms are located in axial positions, and the other two N atoms and the Cl atom are in the equatorial plane. The Cu atom is located 0.0670 (2) Å below the equatorial plane. Received 14 November 2002 Accepted 2 December 2002 Online 19 December 2002

Comment

In recent years, N-functionalized 1,4,7-triazacyclononanes (tacn) have attracted attention, since they afford versatile and efficient ligands. Some metal complexes involving such ligands have potential applications: the modeling of enzymes (Wainwright, 1997), radiotherapeutic agents and time-resolved luminescence labels (Charbonnière *et al.*, 2001). Derivatives of tacn with pendant pyridines (Tamura *et al.*, 2000), anilines (Fallis *et al.*, 2000), imidazoles, pyrazoles (Di Vaira *et al.*, 2000), *etc.* have been reported. However, the crystal structures of derivatives of tacn with benzimidazole have not yet been reported.

Here we report the crystal structure of one such complex, [1-(benzimidazol-2-ylmethyl)-1,4,7-triazacyclononane]viz. chlorocopper(II) perchlorate, (I), which has potential pharmaceutical application as an SOD (superoxide dismutase) mimic. In this complex, the copper atom is located at the center of a distorted trigonal bipyramid of five coordinating atoms (four N atoms and one chlorine atom). N2 and N4 are located in the axial positions, and N1, N3, Cl2 are in the equatorial plane. The N2-Cu1-N4 angle is 164.01 (9)°; the three axial-equatorial angles N2-Cu1-N1, N2-Cu1-N3, and N2-Cu1-Cl2 are 83.55 (8), 83.43 (9) and 94.26 (7)°, respectively. In the equatorial plane, the angles N1-Cu1-Cl2, Cl2-Cu1-N3 and N3-Cu1-N1 are 153.09 (6), 123.14 (6) and 83.37 (8)°, respectively. The copper atom is located 0.0670 (2) Å below the least-squares plane defined by N1, N3 and Cl2.

The distance Cu1-Cl2 is 2.2828 (9) Å. Of the four Cu-N bonds, the shortest is that to the pendant nitrogen, N4

Figure 1

View of the title complex, showing the labeling of the non-H atoms and 30% probability ellipsoids. H atoms have been omitted.

[1.964 (2) Å], whereas the average distance for the three bonds to the triazacyclononane-N atoms is 2.103 (6) Å. This value compares well with the corresponding value of 2.080 (1) Å in the related imidazole compound (Di Vaira *et al.*, 2000).

The crystal structure of the title complex is stabilized by hydrogen bonds of the type $N-H\cdots O(\text{perchlorate})$ and $N-H\cdots Cl$, where Cl belongs to a neighboring cation (Table 1).

Experimental

1,4,7–Triazacyclononane (tacn) was prepared by a modified literature method (Koyama & Yoshino, 1972), while 2-chloromethylbenzimidazole (cbz) was prepared according to the method of Rousek (1991). The title compound was synthesized as follows: to a methanol

Figure 2

A view of the crystal packing along the *a* axis. Hydrogen bonds are shown as dashed lines.

solution of tacn (0.05 mol) and cbz (0.05 mol) was added a methanol solution of Cu(ClO₄)₂·6H₂O (0.05 mmol), with stirring at reflux. The mixture was stirred continuously for 5 h, and then cooled and filtered. Slow evaporation of the solution give a blue crystalline compound. Crystals suitable for X-ray analysis were obtained by diffusion of diethyl ether into an acetonitrile solution over a period of three days.

Crystal data

$CuCl(C_{14}H_{21}N_5)]ClO_4$	$D_x = 1.702 \text{ Mg m}^{-3}$
$M_r = 457.80$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 3169
a = 10.336(1) Å	reflections
b = 13.428 (1) Å	$\theta = 2.2-25.1^{\circ}$
c = 13.051 (1) Å	$\mu = 1.55 \text{ mm}^{-1}$
$\beta = 99.56(2)^{\circ}$	T = 293 (2) K
V = 1786.2 (3) Å ³	Block, blue
Z = 4	$0.3 \times 0.2 \times 0.2$ mm
Data collection	
Bruker APEX CCD area-detector	3334 independent reflections
diffractometer	2636 reflections with $I > 2\sigma(I)$
ρ and ω scans	$R_{\rm int} = 0.056$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.5^{\circ}$
(SADABS; Bruker, 2000)	$h = -11 \rightarrow 12$
$T_{\min} = 0.696, \ T_{\max} = 0.733$	$k = -13 \rightarrow 16$
9413 measured reflections	$l = -14 \rightarrow 15$
Refinement	

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.02P)^2]$
$wR(F^2) = 0.069$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.09	$(\Delta/\sigma)_{\rm max} < 0.001$
3334 reflections	$\Delta \rho_{\rm max} = 0.39 \ {\rm e} \ {\rm \AA}^{-3}$
235 parameters	$\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H2C\cdots Cl2^{i}$	0.91	2.49	3.361 (2)	160
N3−H3C···O2	0.91	2.25	3.058 (3)	148
$N5-H5C\cdots O2^{ii}$	0.86	2.29	3.009 (3)	141
$N5-H5C\cdots Cl2^{iii}$	0.86	2.73	3.331 (2)	128

Symmetry codes: (i) -x, -y, -z; (ii) $\frac{1}{2} + x, \frac{1}{2} - y, z - \frac{1}{2}$; (iii) 1 - x, -y, -z.

All H atoms were placed geometrically and refined with a riding model. C–H values were set to 0.97 and 0.93 Å for atoms C1–C7 and C10–C13, respectively; N–H = 0.91 Å for N2 and N3, and 0.86 Å for N5. $U_{\rm iso}$ was constrained to be $1.2U_{\rm eq}$ of the carrier atom.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2000); program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This project was supported by the National Science Foundation of China and The Nanjing University Talent Development Foundation (research grant No. 0205005122).

References

Bruker (2000). SMART, SAINT, SADABS and SHELXTL (version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.

- Charbonnière, L., Ziessel, R., Guardigli, M., Roda, A., N. Sabbatini, N. & Cesario, M. (2001). J. Am. Chem. Soc. **123**, 2436–2439.
- Di Vaira, M., Mani, F. & Stoppioni, P. (2000). *Inorg. Chim. Acta*, **303**, 61–69. Fallis, I. A., Farley, R. D., Malik, K. M. A., Murphy, D. M. & Smith, H. J. (2000).

J. Chem. Soc. Dalton Trans. pp. 3632-3639.

Koyama, H. & Yoshino, T. (1972). Bull. Chem. Soc. Jpn, **45**, 481–484. Rousek, J. P. (1991). Collect. Czech. Chem. Commun. **56**, 1358–1360. Tamura, M., Urano, Y., Kikuchi, K., Higuchi, T., Hirobe, M. & Nagano, T. (2000). J. Organomet. Chem. 611, 586–592.
Wainwright, K. P. (1997). Coord. Chem. Rev. 166, 35–90.